Extended W-twisted order:
For
$$\mu, \nu \in X_{k}, \mu \geqslant \nu$$
 and $\mu - \nu \geqslant 0$ and $\mu - \nu = \sum n_{i \in I} a_{i} i n_{i} \gtrsim 0$
 $a = 0 \quad (i \in I, \mu - \nu) = n_{i} \in Z_{20} \forall i$
Extend on the by declaring $a \geqslant \beta$ if $\langle i \in I, \kappa - \beta \geqslant 0 \forall i \in I$.
Notation:
 $W = twist : \mu \geqslant w \nu$ and $w = 1 \mu \geqslant w^{-1} \nu \ll 0$ $(i \in I, \kappa - \beta \geqslant 0 \forall i \in I)$.
 $W = twist : \mu \geqslant w \nu$ and $w = 1 \mu \geqslant w^{-1} \nu \ll 0$ $(i \in I) \geqslant 0 \forall i \in I$.
 $W = \sum \alpha \in t_{R_{i}} i \Rightarrow w \mid \beta = 2 \quad \alpha \in t_{R_{i}} ; \quad (w \ge i, \alpha > \beta \land (w \ge i, \mu) \forall i \in I) > 0 \forall i \in I$.
 $\Gamma = \sum w \ge i \quad (i \in I, w \in W) = dnomber weights$ uester of the come is μw , normals are $w \ge i$.

<u>Recall</u>. We defined a family of polytopes living in the called GGMS polytopes (or pseudo-weyl polytopes). They can be defined in two ways.

1. From a collection of conveights (which turn out to be the vertices of P)

This defines P in terms of intersections of translated reflected cones.

2. From a collection of integers (which turn out to define the faces of P)

This defines P as intersections of half-spaces.

§.1. Polytopes from a collection of coweights

Given a collection of councights (pw)wEW, define

$$P(\mu_{\bullet}) = \bigcap_{w \in W} C_{w}^{m}$$

We impose that \$musuew satisfies musume Wu, weW. Then:

Prop 2.2. 1) The vertices of P(mo) are the Emmi we'WE (repetition is allowed). Thus, P(mo)= conv(mo).

§. 2 Polytopes from collections of integers

Given a collection of integers
$$\frac{2}{3}M_{5}^{2}_{3}_{5\in\Gamma}$$
 define.
 $P(M_{\bullet}) = \bigcap_{\gamma \in \Gamma} \frac{2}{3}det_{R,i} (\gamma, \alpha, \gamma, 2M_{\gamma})^{2}$
intersection of half spaces
 M_{T}
 $\frac{1}{3}d\gamma M_{\delta}$
 $\frac{1}{3}d\gamma (\gamma, \alpha, \gamma) = M_{\gamma}^{2}$
 $\frac{1}{3}d\gamma (\gamma, \alpha, \gamma) = M_{\gamma}^{2}$

let {Musuew be a collection of convergints s.t. Musumu. Then, letting Muci = (WD1, Mu), one has antomotically P(Mo) = P(Mo).

In the case of
$$\lambda$$
-weyl polytopes, $H_{WQi} = \langle w \varpi i, w w \circ \rangle = \langle \varpi i, w \circ \rangle \rangle$
= $\langle w \circ \varpi i, \lambda \rangle$
= $\langle - \varpi i, \lambda \rangle$ = $- \langle \varpi i, \lambda \rangle$
Dynkin involution

The greation is now when is a collection 2M&33007 corning from a collection 2Mw3weW? Notice that when My comes from a collection of coweights, then

$$M_{ws;\varpi_i} + M_{w\varpi_i} + \Sigma_{j\neq_i} a_{ji} M_{w\varpi_j} = 60$$

since

Call the inequalities (*) the "edge inequalities"

Prop 2.2. 2) Suppose $\frac{1}{2}M_8 \frac{3}{8} = r$ satifies the edge inequalities. Then, $P(M_{\bullet})$ is a GGMS polytope with vertices given by $\mu_W = \sum_{i \in I} M_W w_i \cdot W w_i^*$.

$$\begin{split} \mu_{w} &= \sum_{j \in I} M_{w} \omega_{j} \cdot w \alpha_{j}^{v} \qquad \mu_{ws_{i}} = \sum_{j \in I} M_{ws_{i}} \omega_{j} \cdot (ws_{i}) \alpha_{j}^{v} \\ \mu_{ws_{i}} &= \sum_{j \in I} M_{ws_{i}} \omega_{j} \cdot ws_{i} \alpha_{j}^{v} \\ &= \left(\sum_{j \neq i} M_{w} \omega_{j} \cdot ws_{i} \alpha_{j}^{v}\right) + M_{ws_{i}} \omega_{i} \cdot ws_{i} \alpha_{i}^{v} \\ &= \left(\sum_{j \neq i} M_{w} \omega_{j} \cdot w(\alpha_{j}^{v} - \alpha_{j} \alpha_{i}^{v})\right) - M_{ws_{i}} \omega_{i} \cdot w \alpha_{i}^{v} \\ &= \left(\sum_{j \neq i} M_{w} \omega_{j} \cdot w \alpha_{j}^{v}\right) + \left(-M_{ws_{i}} \omega_{i} - \sum_{j \neq i} \alpha_{j} \cdot M_{w} \omega_{j}\right) w \alpha_{i}^{v} \end{split}$$

and

$$\Rightarrow \mathsf{Pws}_i - \mathsf{Pww} = \left(-\mathsf{Mww}_i - \mathsf{Mws}_i = \sum_{j \neq i} a_{ji} \mathsf{Mww}_i\right) \mathsf{wd}_i^{\mathsf{v}}$$

which justified the terminology "edge inequalities".

§3. Geometric data

As mentionned during the previous weeks, there is a geometric analogue of P(M.O). Given \$muSwew satisfying MV Zw MW, define

A(pro)= Nwew show = GGMS stratum of pr.
Recall that
$$\overline{o}(S_{m}^{m}) = C_{m}^{m}$$

lemma: $\overline{\Phi}(\overline{A(\mu_{\bullet})}) = P(\mu_{\bullet})$ or $A(\mu_{\bullet}) = \emptyset$

We want a geometric construction of the P(M.) such that A(M.)=A(M.).

First, we generalize the valuation on
$$GL_n(IK)$$
 defined as $val(det(g))$.
Recall that $v: IK \rightarrow \mathcal{U} \cup \overset{i}{J} \overset{o}{o}^3 v(f) = degree of the first non-zero welf. If $v(f) = k$, then $f = a_k t^{k_{+...}}$ and
 $fet^k O$, $fgt^{k+1} O$, $\cdots \subseteq t^k O \subseteq t^{k-1} O \subseteq \ldots$.
Thus, one can redefine v using the filtration $zt^k O; k \in \mathcal{U}$ of IK by
 $v(f) = k$ if $fet^k O$ but $fgt^{k+1} O$.$

Now, for any C-vect space U, the K-vect space $K \otimes_{\mathbb{C}} U$ has a fillwatton by $t^{k} O \otimes_{\mathbb{C}} U$. Define v(u) = k if $u \in t^{k} O \otimes U$ but $u \notin t^{k+1} O \otimes U$.

We use the convention
$$Gr = G(\mathfrak{O}^{G(\mathbf{k})})$$
. For each $i \in I_1$, fix $v_{\varpi_i} \in V(\varpi_i)$ is how vector. For each $\mathcal{T} = w \varpi_i \in \Gamma$, let $v_{\mathcal{T}} = \overline{w} v_{\varpi_i} \in V(\varpi_i)$, where $\overline{s}_1 = \Psi_i(\binom{0}{10})$. It linear
If V is a G representation, $p: G \rightarrow GL(V) \Rightarrow p: G(\mathbf{k}) \rightarrow GL(V)(\mathbf{k}) = GL(\mathbf{k} \otimes V)$. This preserves the notion of hw vectors : $v \in V^N \Rightarrow v \in \mathbf{k} \otimes V^{N(\mathbf{k})}$. Also, if $v \in V_v$, then $t^M v = t^{(v,M)} v$. lastly, if $g \in G(\mathcal{O})$, then $p(g) \in GL(O \otimes V) \Rightarrow det(p(g)) \in O^X$.

G acts on V(
$$\infty$$
i) => G(IK) acts on K \otimes V(∞ i).
Thus, if g \in G(D), val(gv)=val(v). If descends to a function
 $D_{\sigma}: Gv \rightarrow \mathcal{U}$, $D_{\sigma}(g)=val(gv_{\sigma})$.

 $D_{\mathcal{F}}(gh) = \operatorname{val} gh \vee_{\mathcal{F}}) = \operatorname{val}(h \vee_{\mathcal{F}}) = D_{\mathcal{F}}(h)$ if $\mathfrak{g}_{\mathcal{F}}(\mathbb{O})$.

Moreover, v_{0} ; is a hwavector \Rightarrow it is N invariant $\Rightarrow v_{0}$; $\in \mathbb{R} \otimes V(\mathbb{Q})$ is N(1k) invariant. Using the N-twist, we see that $\overline{w}v_{0}$; is $\overline{w} N(1k)\overline{w}^{-1} = N_w(1k) - invariant.$

Recall that

$$S_w^m = t^m N_w(lk) \subseteq G(O) \setminus b(lk)$$
, $G_V = \bigsqcup_{m \in X_N} S_w^m$ (**)

Also, if
$$\overline{w} \in N(T)$$
 is any lift of $w \in W$, then $\overline{w} \vee eV_{wv}$.
Consequently,
 $t^{M} \cdot v_{\gamma} = t^{(w\overline{\omega};, M^{\gamma})} \cdot v_{\gamma}$
and $x \in S_{w}^{m} \Rightarrow x = t^{m} \overline{w} n \overline{w}^{-1} \quad n \in N(IK)$,
 $D_{\gamma}(x) = val(t^{m} \overline{w} n \overline{w}^{-1} \overline{w} \vee a_{i}) = val(t^{m} \overline{w} \vee a_{i})$
 $= val((t^{cw\overline{\omega};,M^{\gamma}}) \overline{w} \vee a_{i}) = (w\overline{\omega};M^{\gamma})$.

It follows that $D_{\mathcal{F}}$ takes constant values on S_w^m . Since for a fixed w, $(w \varpi_i)_{-7}$ $\forall i \in I$ determines μ_i . it follows from the decomp ****** that

$$S_w^n = \{ L \in G_v ; D_{woi}(L) = \langle woi, \mu \rangle \ \forall i \in \mathbb{Z} \}$$

This promise the following def: For $\{M_Y\}_{Y \in \Gamma}$ a collection of integers $A(M_0) = \{L \in G_Y : D_Y(L) = M_Y : \forall Y \in \Gamma \}$

and it follows that A(M.)=A(M.).

Upshot: There is a condition of $\{M, 3, s, t, \Phi(\overline{A(M_s)}) \neq \emptyset$ iff this condition is satisfied.