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Ball : We defined a family of polytopes living in FR called GGMS polytopes (or pseudo-Weyl polytopes). They can

be defined in two ways.

I. From a collection of coweights (which turn out to be the vertices of P

This defines 4 in terms of intersections of translated reflected cones.

2. From a collection of integers /which turn out to define the faces of P

This defines 4 as intersections of half-spaces .

5.1 . Polytopes from a collection of coweights
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Given X(X*)+ 1
we know that the irrep X(X) of GV is such that

wt(V(x)) = Em = (X*)+ ; X(x)q=03 = conv(WX). lowestwevati
This polytope is called the X-Weyl polytope .
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